3.21.60 \(\int \frac {\sqrt {d+e x}}{\sqrt {a d e+(c d^2+a e^2) x+c d e x^2}} \, dx\) [2060]

Optimal. Leaf size=46 \[ \frac {2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{c d \sqrt {d+e x}} \]

[Out]

2*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/c/d/(e*x+d)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.01, antiderivative size = 46, normalized size of antiderivative = 1.00, number of steps used = 1, number of rules used = 1, integrand size = 39, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.026, Rules used = {662} \begin {gather*} \frac {2 \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{c d \sqrt {d+e x}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[d + e*x]/Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2],x]

[Out]

(2*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(c*d*Sqrt[d + e*x])

Rule 662

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[e*(d + e*x)^(m - 1)*
((a + b*x + c*x^2)^(p + 1)/(c*(p + 1))), x] /; FreeQ[{a, b, c, d, e, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c
*d^2 - b*d*e + a*e^2, 0] &&  !IntegerQ[p] && EqQ[m + p, 0]

Rubi steps

\begin {align*} \int \frac {\sqrt {d+e x}}{\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx &=\frac {2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{c d \sqrt {d+e x}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.02, size = 35, normalized size = 0.76 \begin {gather*} \frac {2 \sqrt {(a e+c d x) (d+e x)}}{c d \sqrt {d+e x}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[d + e*x]/Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2],x]

[Out]

(2*Sqrt[(a*e + c*d*x)*(d + e*x)])/(c*d*Sqrt[d + e*x])

________________________________________________________________________________________

Maple [A]
time = 0.72, size = 32, normalized size = 0.70

method result size
default \(\frac {2 \sqrt {\left (c d x +a e \right ) \left (e x +d \right )}}{\sqrt {e x +d}\, c d}\) \(32\)
gosper \(\frac {2 \left (c d x +a e \right ) \sqrt {e x +d}}{d c \sqrt {c d e \,x^{2}+a \,e^{2} x +c \,d^{2} x +a d e}}\) \(50\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)^(1/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x,method=_RETURNVERBOSE)

[Out]

2/(e*x+d)^(1/2)*((c*d*x+a*e)*(e*x+d))^(1/2)/c/d

________________________________________________________________________________________

Maxima [A]
time = 0.31, size = 19, normalized size = 0.41 \begin {gather*} \frac {2 \, \sqrt {c d x + a e}}{c d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(1/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm="maxima")

[Out]

2*sqrt(c*d*x + a*e)/(c*d)

________________________________________________________________________________________

Fricas [A]
time = 2.16, size = 51, normalized size = 1.11 \begin {gather*} \frac {2 \, \sqrt {c d^{2} x + a x e^{2} + {\left (c d x^{2} + a d\right )} e} \sqrt {x e + d}}{c d x e + c d^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(1/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm="fricas")

[Out]

2*sqrt(c*d^2*x + a*x*e^2 + (c*d*x^2 + a*d)*e)*sqrt(x*e + d)/(c*d*x*e + c*d^2)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sqrt {d + e x}}{\sqrt {\left (d + e x\right ) \left (a e + c d x\right )}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)**(1/2)/(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(1/2),x)

[Out]

Integral(sqrt(d + e*x)/sqrt((d + e*x)*(a*e + c*d*x)), x)

________________________________________________________________________________________

Giac [A]
time = 2.62, size = 62, normalized size = 1.35 \begin {gather*} \frac {2 \, \sqrt {{\left (x e + d\right )} c d e - c d^{2} e + a e^{3}} e^{\left (-1\right )}}{c d} - \frac {2 \, \sqrt {-c d^{2} e + a e^{3}} e^{\left (-1\right )}}{c d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(1/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm="giac")

[Out]

2*sqrt((x*e + d)*c*d*e - c*d^2*e + a*e^3)*e^(-1)/(c*d) - 2*sqrt(-c*d^2*e + a*e^3)*e^(-1)/(c*d)

________________________________________________________________________________________

Mupad [B]
time = 0.82, size = 54, normalized size = 1.17 \begin {gather*} \frac {2\,\sqrt {d+e\,x}\,\sqrt {c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e}}{c\,d\,e\,\left (x+\frac {d}{e}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d + e*x)^(1/2)/(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2),x)

[Out]

(2*(d + e*x)^(1/2)*(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2))/(c*d*e*(x + d/e))

________________________________________________________________________________________